Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 29 results

Traits related to biotic stress tolerance

Viral and fungal resistance: Tomato yellow leaf curl virus (TYLCV) and powdery mildew (Oidium neolycopersici), diseases which reduce tomato crop yields and cause substantial economic losses each year.
(Pramanik et al., 2021)
SDN1
CRISPR/Cas
Gyeongsang National University
Pusan National University
R&
D Center, Bunongseed Co., South Korea
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Herbicide resistance: pds (phytoene desaturase), ALS (acetolactate synthase), and EPSPS (5-Enolpyruvylshikimate-3-phosphate synthase)
(Yang et al., 2022)
SDN1
CRISPR/Cas
Chonnam National University, South Korea
Viral resistance: resistance to pepper veinal mottle virusin cherry fruit tomato (Solanum lycopersicum var. cerasiforme)
(Kuroiwa et al., 2021)
SDN1
CRISPR/Cas
INRAE
Université Paris-Saclay
Université de Toulouse, France
Nematode resistance: decreased susceptibility against root-knot nematodes, showing fewer gall and egg masses.
(Noureddine et al., 2023)
SDN1
CRISPR/Cas
Université Côte d’Azur
Université de Toulouse, France
Kumamoto University, Japan
Viral resistance: resistance to pepper mottle virus (PepMoV), causing considerable damage to crop plants.
(Yoon et al., 2020)
SDN1
CRISPR/Cas
Seoul National University
National Institute of Horticultural and Herbal Science, South Korea
Fungal and bacterial resistance: increased resistance towards the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) and fungal pathogen Alternaria brassicicola.
(Yung Cha et al., 2023)
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA

Traits related to abiotic stress tolerance

Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam
Higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions.
( Bouzroud et al., 2020 )
SDN1
CRISPR/Cas
Université Mohammed V de Rabat, Morocco
Université de Toulouse, France
Universidade Federal de Viçosa, Brazil

Traits related to improved food/feed quality

Improvement of of functional compounds in tomato fruit, which satisfies the antioxidant properties requirements.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University, South Korea

Traits related to increased plant yield and growth

Increased pollen activity, subsequently inducing fruit setting.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University
Chongqing University, China
Université de Toulouse, France
Optimum increase in phloem-transportation capacity leads to improved sink strength in tomato to increase agricultural crop production.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Control meristem size to increase fruit yield.
( Yuste-Lisbona et al., 2020 )
SDN1
CRISPR/Cas
Universidad de Almería
Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas
Spain
Max Planck Institute for Plant Breeding Research
Thünen Institute of Forest Genetics, Germany
Université Paris-Saclay, France
Larger fruits with more locules and larger shoot apical meristem.
( Song et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University, China
University of Toulouse, France
Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Early flowering. Day-light sensitivity limited the geographical range of cultivation.
( Soyk et al., 2016 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory, USA
Max Planck Institute for Plant Breeding Research, Germany
Université Paris-Scalay, France
More flowers in both determinate and indeterminate cultivars and more produced fruit.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Université de Toulouse
Université Bordeaux, France
Chongqing University, China
Increased leaf yield of lettuce by delaying the onset of flowering.
( Choi et al., 2022 )
SDN1
CRISPR/Cas
Korea Research Institute of Bioscience and Biotechnology
Korea University of Science and Technology, South Korea
Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France
Enhanced sink strength in tomato, improving fruit setting, and yield contents.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Regulated inflorescence and flower development. More flowers and more fruit produced upon vibration-assisted fertilization.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Université de Toulouse, France
Chongqing University, China

Traits related to industrial utilization

Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Jung et al., 2020 )
SDN1
CRISPR/Cas
Hankyong National University
Hanyang University
Sunchon National University
Chungbuk National University
Tomato Research Center, South Korea
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium

Traits related to herbicide tolerance

Chlorsulfuron
( Veillet et al., 2019 )

BE
Université Rennes 1
INRA PACA
Université Paris-Saclay, France

Traits related to product color/flavour

Brown color and increased sugar content.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Seoul National University College of Medicine
Chungbuk National University, South Korea
Fine-tuned anthocyanin biosynthesis.
( )
SDN1
CRISPR/Cas
Northeast Forestry University, Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, China
Wonsan University of Agriculture, South Korea

Traits related to storage performance

Enhanced storage potential of ripening fruits.
( Do et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University
Catholic University of Korea, South Korea
Delayed onset of riping.
( Jeon et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University, South Korea