Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 76 results

Traits related to biotic stress tolerance

Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan
Fungal resistance: enhanced resistance against rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici., while also increasing yield.
(Liu et al., 2024)
SDN1
CRISPR/Cas
Southwest University
Yangtze University, China
University of Cologne, Germany
University of Maryland
Fungal resistance: reduced susceptibility to Verticillium longisporum, a pathogen causing Verticillium stem striping. No fungicide treatments are currently available to control this disease.
(Pröbsting et al., 2020)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
NPZ Innovation GmbH, Germany
Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Viral resistance: resistance to rice tungro disease (RTD), the most important viral disease that limits rice production.
(Kumam et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
International Centre for Genetic Engineering and Biotechnology
ICAR-Indian Institute of Rice Research, India
Fungal resistance: increased resistance to both biotrophic and necrotrophic plant pathogenic fungi, Bipolaris spot blotch and Fusarium root rot.
(Galli et al., 2022)
SDN1
CRISPR/Cas
Justus Liebig University, Germany
Bacterial resistance: Plant moderately resistant against a strain of the gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). Xoo severely impacts rice productivity by causing bacterial leaf blight disease.
(Bhagya Sree et al., 2023)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Viral resistance: Resistance to Potato Virus Y (PVY), one of the most devastating viral pathogens causing substantial harvest losses.
(Zhan et al., 2019)

CRISPR/Cas
Hubei University
Huazhong Agricultural University, China
Max‐Planck‐Institut für Molekulare Pflanzenphysiologie, Germany
Bacterial resistance: Resistance/moderately resistance against Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv oryzae (Xoo). BLB is a major constraint in rice production.
(Arulganesh et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Fungal resistance: decreased susceptibility to Ustilago maydis, causing smut. The pathogen causes galls on all aerial parts of the plant, impacting crop yield and quality.
(Pathi et al., 2020)
SDN1
CRISPR/Cas
Leibniz Institute of Plant Genetics and Crop Plant Research, Germany
Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Fungal resistance: improved sheath blight resistance. Sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Cao et al., 2021)
SDN1
CRISPR/Cas
Agricultural College of Yangzhou University
Jiangsu Yanjiang Institute of Agricultural Science
Yangzhou University
Testing Center of Yangzhou University
Ministry of Agriculture
Chinese Academy of Agricultural Sciences
Institutes of Agricultural Science and Technology Development, China
BASF, Germany
Fungal resistance: Resistance to pathogen Colletotrichum truncatum, causing anthracnose, a major disease accounting for significant pre- and post-harvest yield losses.
(Mishra et al., 2021)
SDN1
CRISPR/Cas
Centurion University of Technology and Management
Siksha O Anusandhan University
Rama Devi Women'
s University, India
Viral resistance: Increased resistance to the barley mild mosaic virus (BaMMV), which can cause yield losses as high as 50% upon infection.
(Hoffie et al., 2022)
SDN1
CRISPR/Cas
Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)
Federal Research Centre for Cultivated Plants, Germany
Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium

Traits related to abiotic stress tolerance

Reduced arsenic content. Arsenic accumulation in rice poses a threat to human health.
( Singh et al., 2024 )
SDN1
CRISPR/Cas
Academy of Scientific and Innovative Research (AcSIR)
CSIR-National Botanical Research Institute
CSIR-National Botanical Research Institute, India
Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya
Drought and salt tolerance.
( Kumar et al., 2020 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute
Bhartidasan University, India

Traits related to improved food/feed quality

Glossy sheat phenotype.
( Gerasimova et al., 2023 )
SDN1
CRISPR/Cas
Siberian Branch of the Russian Academy of Sciences
Vavilov Institute of Plant Genetic Resources (VIR)
Siberian Branch of the Russian Academy of Sciences, Russia

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Increased amylose content. Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits and reduce risks of diseases such as coronary heart disease, diabetes and certain colon and rectum cancers.
( Sun et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
University of Liege, Belgium
Fragrant rice. Introduction of aroma into any non-aromatic rice varieties.
( Ashokkumar et al., 2020 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Sashidhar et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Max-Planck-Institute for Evolutionary Biology, Germany
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Slender grains in bold grain varieties.
( Shanthinie et al., 2024 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock.
( Hölzl et al., 2022 )
SDN1
CRISPR/Cas
University of Bonn
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia
Modified composition: accumulation of fivefold more starch than WT leaves, and more sucrose as well. Architectural changes
(Bezrutczyk et al., 2018)
SDN1
CRISPR/Cas
Heinrich Heine University Düsseldorf
Max Planck Institute for Plant Breeding Research, Germany
Department of Plant Biology, Carnegie Science, USA
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Reduced levels of phytic acid (PA). PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Krishnan et al., 2023 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute (IARI)
Bharathidasan University, India
Increased iron content in potato plants. Iron is an essential micronutrient.
( Chauhan et al., 2024 )
SDN1
CRISPR/Cas
Panjab University
Panjab University
National Institute of Plant Genome Research, India
University of Minnesota, USA
Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal
Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Improved aleurone layer with enhanced grain protein content. Improved grain nutritional quality by improved accumulation of essential dietary minerals (Fe, Zn, K, P, Ca) in the endosperm of rice grain. Improved root and shoot architecture.
( Achary et al., 2021 )
SDN1
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology, India

Traits related to increased plant yield and growth

Induced erect leaf habit and shoot growth for a more efficient light penetration into lower canopy layers.
( Fladung et al., 2021 )
SDN1
CRISPR/Cas
Thünen Institute of Forest Genetics, Germany
Increased stomatal density, stomatal conductance, photosynthetic rate and transpiration rate. Fine tuning the stomatal traits can enhance climate resilience in crops.
( Rathnasamy et al., 2023 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
Sugarcane Breeding Institute, India
Increased shatter resistance to avoid seed loss during mechanical harvest.
( Braatz et al., 2017 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Increased yield: plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent.
(Holubova et al., 2018)
SDN1
CRISPR/Cas
Palacký University
Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Republic
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Combine agronomically desirable traits with useful traits present in wild lines. Threefold increase in fruit size and a tenfold increase in fruit number. Fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum.
( Zsögön et al., 2018 )
SDN1
CRISPR/Cas
Universidade Federal de Viçosa
Universidade de São Paulo Paulo, Brazil
University of Minnesota, USA
Universität Münster, Germany
Increased seed oil content (SOC). SOC is a major determinant of yield and quality.
( Karunarathna et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Zhejiang University, China
Control meristem size to increase fruit yield.
( Yuste-Lisbona et al., 2020 )
SDN1
CRISPR/Cas
Universidad de Almería
Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas
Spain
Max Planck Institute for Plant Breeding Research
Thünen Institute of Forest Genetics, Germany
Université Paris-Saclay, France
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Increased water use efficiency without growth reductions in well-watered conditions.
( Blankenagel et al., 2022 )
SDN1
CRISPR/Cas
Technical University of Munich
Max Planck Institute of Molecular Plant Physiology
German Research Center for Environmental Health
KWS SAAT SE &
Co.KGaA
Université Technique de Munich
Heinrich Heine University, Germany
LEPSE - Écophysiologie des Plantes sous Stress environnementaux, France
Early flowering. Day-light sensitivity limited the geographical range of cultivation.
( Soyk et al., 2016 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory, USA
Max Planck Institute for Plant Breeding Research, Germany
Université Paris-Scalay, France
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India
Improves complex traits such as yield and drought tolerance.
( Lorenzo et al., 2022 )
SDN1
CRISPR/Cas
Center for Plant Systems Biology
Ghent University
Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Belgium
Root growth angle regulation, among the most important determinants of root system architecture. Root growth angle controls water uptake capacity, stress resilience, nutrient use efficiency and thus yield of crop plants.
( Kirschner et al., 2021 )
SDN1
CRISPR/Cas
University of Bonn
University of Cologne
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben
Justus-Liebig-University Giessen, Germany
University of Bologna, Italy

Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Increased water use efficiency, a promising approach for achieving sustainable crop production in changing climate scenarios.
( Blankenagel et al., 2022 )
SDN1
CRISPR/Cas
Technical University of Munich
Max Planck Institute of Molecular Plant Physiology
Helmholtz Center Munich
Heinrich Heine University Düsseldorf, Germany
Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France

Traits related to industrial utilization

Tailoring poplar lignin without yield penalty. Reduced recalcitrance.
( De Meester et al., 2020 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology
VIB Metabolomics Core, Belgium
Genetic variability. The genetically reprogrammed rice plants can act as donor lines to stabilize important agronomic traits or can be a potential resource to create more segregating population.
( K et al., 2021 )
SDN1
CRISPR/Cas
University of Agricultural Sciences
Regional Centre for Biotechnology, India
Doubled haploids with increased leaf size. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Impens et al., 2023 )
SDN1
CRISPR/Cas
Ghent University
VIB-UGent Center for Plant Systems Biology
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
Reduced lignin content and increased sugar release upon saccharification.
( De Meester et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Induction of haploid plants and a reduced seed set for rice breeding.
( Yao et al., 2018 )
SDN2
CRISPR/Cas
ZhongGuanCun Life Science Park, China
Syngenta India Limited
Technology Centre
Medchal Mandal, India
Syngenta Crop Protection
LLC
Research Triangle Park, USA
Haploid induction to accelerate breeding in crop plants.
( Rangari et al., 2023 )
SDN1
CRISPR/Cas
Punjab Agricultural University, India
Nicotine-free tobacco.
( Schachtsiek et al., 2019 )
SDN1
CRISPR/Cas
TU Dortmund University, Germany
35% reduction in lignin. Fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Efficient saccharification is hindered by the presence of lignin in the secondary-thickened cell walls.
( de Vries et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Conferring water logging tolerance for further expansion of the cultivation area.
( Abdullah et al., 2021 )
SDN1
CRISPR/Cas
Faculty of Agriculture
University of Nottingham
Universiti Putra Malaysia, Malaysia
Glycoproteins without plant-specific glycans. Plants or plant cells can be used to produce pharmacological glycoproteins, for example antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose]. This plant-specific glycans can greatly impact the immunogenicity, allergenicity, or activity of the protein.
( Mercx et al., 2017 )
SDN1
CRISPR/Cas
Université catholique de Louvain
Université de Liège, Belgium
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium

Traits related to herbicide tolerance

Glyphosate & hppd inhibitor herbicides, for example tembotrione
( D'Halluin et al., 2013 )
SDN2
CRISPR/Cas
Bayer CropScience N.V, Belgium

Traits related to product color/flavour

Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India
Colour shift. The poinsettia belongs to most economically important potted ornamental plants. Customers are willing to pay higher prices for unusual varieties.
( Nitarska et al., 2021 )
SDN1
CRISPR/Cas
Technische Universität Wien, Austria
Klemm+Sohn GmbH &
Co
Leibniz Universität Hannover, Germany
Albino phenotype.
( Yeap et al., 2021 )
SDN1
CRISPR/Cas
Sime Darby Plantation Technology Centre Sdn. Bhd.
Sime Darby Plantation Research Sdn. Bhd., Malaysia
Increased content of phenylacetaldehyde, sucrose and fructose, which are major contributors to flavor in many foods, including tomato.
( Li et al., 2023 )
SDN1
CRISPR/Cas
University of Florida, USA
Max-Planck-Institute of Molecular Plant Physiology, Germany
Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India

Traits related to storage performance

Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India
Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA