Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 11 results

Traits related to biotic stress tolerance

Viral resistance: enhanced resistance against wheat dwarf virus, which is a causal agent of wheat viral disease and can significantly impact wheat production worldwide.
(Yuan et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Northwest A&
F University, China

Norwegian Institute of Bioeconomy Research, Norway

Traits related to abiotic stress tolerance

Increased drought tolerance.
( Abdallah et al., 2022 )
SDN1
CRISPR/Cas
Cairo University, Egypt
Crop Improvement and Genetics Unit, USA
Drought tolerance.
( Kim D et al,. 2018 )
SDN1
CRISPR/Cas
Montana State University, USA
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden

Traits related to improved food/feed quality

Reduced gluten content. Coeliac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins.
( Sánchez-León,et al., 2017 )
SDN1
CRISPR/Cas
Instituto de Agricultura Sostenible (IASCSIC), Spain
University of Minnesota, USA
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK

Traits related to increased plant yield and growth

Enhanced grain yield and semi-dwarf phenotype by manipulating brassinosteroid signal pathway.
( Song et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Hard Winter Wheat Genetics Research Unit, USA
Increased grain weight and grain size. Carbohydrate and total protein levels also increased.
( Guo et al., 2021 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
University of California, USA

Traits related to industrial utilization

Generation of male-sterile hexaploid wheat lines for use in hybrid seed production. The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity.
( Okada et al., 2019 )
SDN1
CRISPR/Cas
The University of Adelaide, Australia
Huaiyin Normal University, China
Rapid generation of male sterile (MS) bread wheat. MS is an important tool in creating hybrid crop varieties that provide a yield advantage over traditional varieties by harnessing heterosis.
( Singh et al., 2021 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA

Traits related to herbicide tolerance

Herbicide glyphosate tolerance.
( Arndell et al., 2019 )
SDN1
CRISPR/Cas
CSIRO
New South Wales Department of Primary Industries
The University of Adelaide, Australia