Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 24 results

Traits related to increased plant yield and growth

Increased seed size and yields without alterations in plant architecture or seed nutrition.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Northeast Forestry University
Northeast Agricultural University, China
Compact architecture with a smaller petiole angle than wild-type plants.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Beijing Vocational College of Agriculture
Xiamen University, China
Altered plant architecture to increase yield: more compact plant architecture.
(Kong et al., 2023)
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Agricultural Sciences
Hebei Academy of Agricultural and Forestry Sciences, China
Regulate shade avoidance. Soybean displays the classic shade avoidance syndrome (SAS), which leads to yield reduction and lodging under density farming conditions.
( Lyu et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Jilin Agricultural University
Shandong Agricultural University
Northeast Agricultural University, China
Enhanced performance of soybean under dense conditions.
( Ji et al., 2022 )
SDN1
CRISPR/Cas
Academy of Agricultural Sciences
Southern University of Science and Technology, China
Dwarf phenotype, which can aid in obtaining more compact, densely planted soybean varieties to boost productivity.
( Xiang et al., 2024 )
SDN1
CRISPR/Cas
Wuhan Polytechnic University
Chinese Academy of Agricultural Sciences, China
Enhanced photosynthesis and increases seed yield.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Sciences
Henan Institute of Science and Technology, China
Control flowering time, an important determinant for soybean yield and adaptation.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Guangzhou University
Yunnan Agricultural University
Nanjing Agricultural University
Key Laboratory of Crop Genetics and Breeding of Hebei, China
Improved high-density yield and drought/osmotic stress tolerance.
( Chen et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China
Texas Tech University, USA
Overexpression causes strongly promoted stem elongation, lower expression resulted in dwarf phenotype.
( Mu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Bigger seeds and increased yield.
( Xie et al., 2024 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Anhui Agricultural University
Bellagen Biotechnology Co. Ltd
Ministry of Agriculture and Rural Affairs
Southern University of Science and Technology
Hainan Yazhou Bay Seed Laboratory, China
Late flowering. Photoperiod sensitivity limits geographical range of cultivation.
( Cai et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Reduction of soybean plant height and shortening of the internodes. The height of the soybean plant is a key trait that significantly impacts the yield.
( Cheng et al., 2019 )
SDN1
CRISPR/Cas
Guangzhou University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
Increased grain yield.
( Chen et al., 2024 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Chinese Academy of Agricultural Sciences
Tianjin Academy of Agricultural Sciences
Chinese Academy of Agricultural Sciences
Minzu University of China
Hebei Academy of Agriculture and Forestry Science, China
Reduced seed shattering. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest.
( Ning et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Africa Rice Center, Benin
Increased nodule numbers. Soybean is a globally important crop for oil production and protein for human diet.
( Bai et al., 2019 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Nanchang University, China
Shortened flowering time and maturity, determining their favourable latitudinal zone for cultivation.
( Gao et al., 2024 )
SDN1
CRISPR/Cas
Syngenta Seed Technology China Co., China
Control flowering time, an important determinant for soybean yield and adaptation.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Agronomy College of Heilongjiang Bayi Agricultural University
Nanjing Agricultural University
Heilongjiang Academy of Agricultural Sciences, China
Improved pod shattering resistance. Pod shattering has been a negatively selected trait in soybean domestication and breeding as it can lead to devastating yield loss of soybean.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Heilongjiang Bayi Agricultural University
Hebei Academy of Agricultural and Forestry Sciences, China
Earlier maturation time under both short-day and long-day conditions.
( Wu et al., 2024 )
SDN1
CRISPR/Cas
Heilongjiang Bayi Agricultural University
Chinese Academy of Agricultural Sciences
Northeast Agricultural University
Syngenta Biotechnology (China) Co. Ltd, China
Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Shorter flowering time and increased yield.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
Jilin Normal University
Jilin Academy of Agricultural Sciences, China
Increasing the number of seeds per pod (NSPP), an important yield determinant.
( Cai et al., 2021 )
SDN1
CRISPR/Cas
South China Agricultural University, China
Promoting nodulation: up-regulation of expression levels of genes involved in nodulation. Nitrogen-fixing symbiotic nodules strongly up regulate yield.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Beijing Institute of Technology
Chinese Academy of Agricultural Sciences, China