Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 5 results

Traits related to biotic stress tolerance

Fast and accurate field screening and differentiation of four major Tobamoviruses infecting tomato and pepper. Tomatoviruses are the most important viruses infecting plants and cause huge economic losses to tomato and pepper crops globally.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
China Agricultural University, China

Traits related to increased plant yield and growth

Semi-dwarf phenotype. High varieties are challenged by weak lodging and damages caused by storms, dwarf varieties are suitable for mechanized plant maintenance and fruit harvesting.
( Shao et al., 2020 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Hunan Agricultural University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
University of Florida, USA

Traits related to product color/flavour

Albino phenotype.
( Wang et al., 2018 )
SDN1
CRISPR/Cas
Provincial Key Laboratory of Applied Botany
Guangdong Provincial Key Laboratory of Applied Botany
University of Chinese Academy of Sciences, China
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand

Traits related to storage performance

Increased shelf-life. Banana fruit has a high economic importance but will ripen and decay in one week after exogenous ethylene induction. Fast ripening limits its storage, transportation and marketing.
( Hu et al., 2021 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Guangdong Laboratory for Lingnan Modern Agriculture, China