Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 11 results

Traits related to biotic stress tolerance

Viral resistance: increased resistance to turnip mosaic virus (TuMV).
(Lee et al., 2023)
SDN1
CRISPR/Cas
Rural Development Administration
Advanced Institute for Science and Technology, South Korea
North Carolina State University, USA

Traits related to abiotic stress tolerance

Regulated circadian clock: circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness. Mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm. Exposure to high temperature due to global warming.
(Kim et al., 2022)
SDN1
CRISPR/Cas
National Institute of Agricultural Science
Korea Polar Research Institute
Seoul National University College of Medicine, South Korea

Traits related to improved food/feed quality

Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia

Traits related to increased plant yield and growth

Delayed bolting.
( Shin et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Delayed bolting.
( Shin et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea

Traits related to industrial utilization

Improve biofuel production by mediating lignin modification. Lignocellulosic biomasses are an abundant renewable source of carbon energy. Heterogenous properties of lignocellulosic biomass and intrinsic recalcitrance caused by cell wall lignification lower the biorefinery efficiency. Reduced lignin content is desired.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
Korea Institute of Science and Technology (KIST)
University of Science and Technology (UST)
Daejeon, South Korea
Delayed flowering time.
( Hong et al., 2021 )
SDN1
CRISPR/Cas
National Institute of Agricultural Sciences, South Korea
Early-flowering.
( Jeong et al., 2021 )
SDN1
CRISPR/Cas
Department of Biological Science
Seoul National University
Chungnam National University
Institute for Basic Science
Kangwon National University
Kyunghee University, South Korea