Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 88 results

Traits related to biotic stress tolerance

Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Bacterial resistance: Plant moderately resistant against a strain of the gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). Xoo severely impacts rice productivity by causing bacterial leaf blight disease.
(Bhagya Sree et al., 2023)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Significantly enhanced resistance to V. dahliae, and furthermore also to Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici (Fol), despite severe growth defects.
( Hanika et al., 2021 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Resistance to parasitic weed: Striga spp. The parasitic plant reduces yields of cereal crops worldwide.
(Hao et al., 2023)
SDN1
CRISPR/Cas
University of Nebraska-Lincoln
Pennsylvania State University, USA
International Maize and Wheat Improvement Center (CIMMYT), Senegal
Kenyatta University, Kenya

Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands
Resistance against a protist pathogen: stable resistance against clubroot disease. Clubroot disease is caused by the protist Plasmodiophora brassicae Woronin and can result in a 10-15% yield loss in Brassica species as well as related crops.
(Hu et al., 2023)
SDN1
CRISPR/Cas
Saskatoon Research and Development Centre, Canada
Rapid and on-site detection of the mycotoxin zearalenone.
( Pei et al., 2024 )
SDN1
CRISPR/Cas
Shaanxi University of Science and Technology
Anhui Agricultural University
China National Center for Food Safety Risk Assessment, China
Queen'
s University Belfast, UK
Viral resistance: resistance to rice tungro disease (RTD), the most important viral disease that limits rice production.
(Kumam et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
International Centre for Genetic Engineering and Biotechnology
ICAR-Indian Institute of Rice Research, India
Fungal resistance: resistance to Fusarium graminearum. Fusarium head blight (FHB) is an economically important disease, affecting both yield and grain quality of maize, wheat and barley.
(Brauer et al., 2020)
SDN1
CRISPR/Cas
Ottawa Research and Development Centre, Canada
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Bacterial resistance: Resistance/moderately resistance against Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv oryzae (Xoo). BLB is a major constraint in rice production.
(Arulganesh et al., 2022)
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Fungal resistance: Enhanced resistance against powdery mildew, caused by Oidium neolycopersici, which is a major concern for the productivity of tomato plants.
(Li et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Wageningen University &
Research, The Netherlands
Shanxi Agricultural University, China
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Bacterial resistance: resistance against banana Xanthomonas wilt (BXW) disease, caused by Xanthomonas campestris pv. musacearum. BXW forms a great threat to banana cultivation in East and Central Africa.
(Ntui et al., 2023)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture, Kenya
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Fungal resistance: Resistance to pathogen Colletotrichum truncatum, causing anthracnose, a major disease accounting for significant pre- and post-harvest yield losses.
(Mishra et al., 2021)
SDN1
CRISPR/Cas
Centurion University of Technology and Management
Siksha O Anusandhan University
Rama Devi Women'
s University, India
Fungal resistance: Reduced susceptibility to the powdery mildew pathogen (Oidium neolycopersici), a world-wide disease threatening the production of greenhouse- and field-grown tomatoes.
(Santillán Martínez et al., 2020)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Viral resistance: increased resistance against Tobacco Mosaic Virus (TMV).
(Jogam et al., 2023)
SDN1
CRISPR/Cas
Kakatiya University
Center of Innovative and Applied Bioprocessing (DBT-CIAB), India
University of Minnesota
East Carolina University, USA
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
Enhanced resistance to insects, no serotonin production and higher salicylic acid levels. Rice brown planthopper (BPH; Nilaparvata lugens Stål) and striped stem borer (SSB; Chilo suppressalis) are the two most serious pests in rice production.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences
Wuxi Hupper Bioseed Ltd.
Hubei Collaborative Innovation Center for Grain Industry, China
Newcastle University, UK

Traits related to abiotic stress tolerance

Reduced cuticle permeability and enhanced drought tolerance.
( He et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University
USA
University of British Columbia, Canada
Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya
Drought and salt tolerance.
( Kumar et al., 2020 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute
Bhartidasan University, India
Increased tolerance to drought trough reducing water loss. Tuber development.
( Gonzales et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Centro Nacional de Biotecnología – CSIC
Universidad Politécnica de Madrid (UPM), Spain
Increased drought-avoidance strategy.
( Maioli et al., 2024 )
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research, The Netherlands
Reduced arsenic content. Arsenic accumulation in rice poses a threat to human health.
( Singh et al., 2024 )
SDN1
CRISPR/Cas
Academy of Scientific and Innovative Research (AcSIR)
CSIR-National Botanical Research Institute
CSIR-National Botanical Research Institute, India

Traits related to improved food/feed quality

Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid, essential components of a healthy, balanced diet.
( Han et al., 2022 )
SDN1
CRISPR/Cas
Rothamsted Research, UK
Montana State University, USA
Reduced accumulation of free asparagine, the precursor for acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods made from wheat.
( Raffan et al., 2021 )
SDN1
CRISPR/Cas
Rothamsted Research
University of Bristol, UK
Fragrant rice. Introduction of aroma into any non-aromatic rice varieties.
( Ashokkumar et al., 2020 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Slender grains in bold grain varieties.
( Shanthinie et al., 2024 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia
Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Reduced levels of phytic acid (PA). PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Krishnan et al., 2023 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute (IARI)
Bharathidasan University, India
Increased iron content in potato plants. Iron is an essential micronutrient.
( Chauhan et al., 2024 )
SDN1
CRISPR/Cas
Panjab University
Panjab University
National Institute of Plant Genome Research, India
University of Minnesota, USA
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK
Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Increased iron (Fe) and magnesium (Mn) content for biofortification: increasing the intrinsic nutritional value of crops.
(Connorton et al., 2017)
SDN1
CRISPR/Cas
John Innes Centre
University of East Anglia, UK
Altered protein composition due to mutations in seed storage proteins. Two major families of storage proteins, account for about 70% of total soy seed protein. Some major biochemical components influencing the quality of soy food products, for example tofu, are both the quantity and quality of storage proteins in soybean seeds.
( Li et al., 2019 )
SDN1
CRISPR/Cas
Agriculture and Agri-Food Canada
Western University
Harrow Research and Development Centre, Canada
Sun Yat-sen University
Guangdong Academy of Agricultural Sciences
Minnan Normal University
China
Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK
Improved aleurone layer with enhanced grain protein content. Improved grain nutritional quality by improved accumulation of essential dietary minerals (Fe, Zn, K, P, Ca) in the endosperm of rice grain. Improved root and shoot architecture.
( Achary et al., 2021 )
SDN1
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology, India

Traits related to increased plant yield and growth

Regulated sepal growth
( Xing et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences
Zhejiang University, China
University of Nottingham, UK
Dwarf phenotype.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, USA
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India
Increased total kernel number or kernel weight.
( Kelliher et al., 2019 )
SDN1
CRISPR/Cas
Research Triangle Park
University of Georgia, USA
Syngenta Crop Protection, The Netherlands
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Tomlinson et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
University of Minnesota, USA
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Early flowering phenotype with no adverse effect on yield.
( Shang et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory
Chinese Academy of Agricultural Sciences, China
University of Nottingham, UK
Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Increased stomatal density, stomatal conductance, photosynthetic rate and transpiration rate. Fine tuning the stomatal traits can enhance climate resilience in crops.
( Rathnasamy et al., 2023 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
Sugarcane Breeding Institute, India
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Promote growth of axillary buds. Lateral branches develop from the axillary buds. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Guizhou University
Northwest A&
F University
Shandong Agricultural University
Northeast Agricultural University
Shanxi University, China
Oxford University
University of Bedfordshire, UK

Traits related to industrial utilization

Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Induction of haploid plants and a reduced seed set for rice breeding.
( Yao et al., 2018 )
SDN2
CRISPR/Cas
ZhongGuanCun Life Science Park, China
Syngenta India Limited
Technology Centre
Medchal Mandal, India
Syngenta Crop Protection
LLC
Research Triangle Park, USA
Haploid induction to accelerate breeding in crop plants.
( Rangari et al., 2023 )
SDN1
CRISPR/Cas
Punjab Agricultural University, India
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Hairy root transformation. Hairy roots play a role in multiple processes, ranging from recombinant protein production and metabolic engineering to analyses of rhizosphere physiology and biochemistry.
( Ron et al., 2014 )
SDN1
CRISPR/Cas
University of California
Emory University, USA
University of Cambridge, UK
Increasing cross over frequency. Cross over formation during meiosis is essential for crop breeding to introduce favourable alleles controlling important traits from wild relatives into crops.
( de Maagd et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Genetic variability. The genetically reprogrammed rice plants can act as donor lines to stabilize important agronomic traits or can be a potential resource to create more segregating population.
( K et al., 2021 )
SDN1
CRISPR/Cas
University of Agricultural Sciences
Regional Centre for Biotechnology, India
Generate self-compatible diploid potato lines for the application of efficient breeding methods.
( Eggers et al., 2021 )
SDN3
CRISPR/Cas
Solynta
Wageningen University &
Research, The Netherlands
New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK

Traits related to herbicide tolerance

Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA

Traits related to product color/flavour

Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Albino phenotype.
( Syombua et al., 2021 )
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA)
University of Nairobi, Kenya
University of Missouri
Iowa State University
Donald Danforth Plant Science Center, USA
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India
A significant reduction of saponins. Saponins are a source of bitter, and metallic off-flavors in products containing peas.
( Hodgins et al., 2024 )
SDN1
CRISPR/Cas
Universityof Calgary
Universityof Saskatchewan
National Research Council of Canada, Canada

Traits related to storage performance

Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA
Controlling the rate of fruit softening to extend shelf life.
( Uluisik et al., 2016 )
SDN1
CRISPR/Cas
University of Nottingham
Royal Holloway University of London
Heygates Ltd
Syngenta Seeds
Sutton Bonington Campus, UK
Syngenta Crop Protection
University of California
Cornell University
Skidmore College, USA
Decreased postharvest water loss with a 17–30% increase in wax accumulation.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
University of Nottingham, UK
Altering tomato fruit ripening and softening, key traits for fleshy fruit. During ripening, fruit will gradually soften which is largely the result of fruit cell wall degradation. Softening may improve the edible quality of fruit but also reduces fruit resistance to pathogenic microorganisms. Fruit softening can cause mechanical damage during storage and transportation as well, which can reduce the storage and shelf life, leading to fruit loss.
( Gao et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Fujian Agriculture and Forestry University
Zhejiang University
Beijing University of Agriculture, China
University of Nottingham, UK
Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India
Improved shelf-life with improved or not affected sugar: acid ratio, aroma volatiles, and skin color.
(Ortega-Salazar et al., 2023)
SDN1
CRISPR/Cas
University of California, USA
Zhejiang Normal University, China
University of Nottingham, UK
Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya