Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the current and future applications of genome editing in crops, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crops.

The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about genome editing applications in crops. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.

Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.

Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop developed for market-oriented agricultural production as a result of a genome editing.

This database will be regularly updated. Please contact us via the following webpage (https://www.eu-sage.eu/contact) in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing.

This work has been supported by Task Force Planet Re-Imagine Europa (https://reimagine-europa.eu/area/planet)

Genome Editing Technique

Plant

Sdn Type

Displaying 13 results

Traits related to increased plant yield and growth

Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Increase in plant height, tiller number, grain protein content and yield. 1.5- to 2.8-fold increase in total chlorophyll content in the flag leaf at the grain filling stage. Delayed senescence by 10–14 days. High nitrogen content in shoots under low nitrogen conditions.
( Karunarathne et al., 2022 )
SDN1
CRISPR/Cas
Murdoch University
Department of Primary Industries and Regional Development, Australia
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Root growth angle regulation, among the most important determinants of root system architecture. Root growth angle controls water uptake capacity, stress resilience, nutrient use efficiency and thus yield of crop plants.
( Kirschner et al., 2021 )
SDN1
CRISPR/Cas
University of Bonn
University of Cologne
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben
Justus-Liebig-University Giessen, Germany
University of Bologna, Italy

Traits related to industrial utilization

Improve biofuel production by mediating lignin modification. Lignocellulosic biomasses are an abundant renewable source of carbon energy. Heterogenous properties of lignocellulosic biomass and intrinsic recalcitrance caused by cell wall lignification lower the biorefinery efficiency. Reduced lignin content is desired.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
Korea Institute of Science and Technology (KIST)
University of Science and Technology (UST)
Daejeon, South Korea
Conversion of hulled into naked barley.
( Gasparis et al., 2018 )
SDN1
CRISPR/Cas
National Research Institute
Warsaw University of Life Sciences (SGGW), Poland

Traits related to improved food/feed quality

Lowering phytate synthesis in seeds. Phytate is an anti-nutritient.
( Vlčko and Ohnoutková, 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Lower levels of D hordein. D hordein is one of the storage proteins in the grain, with a negative effect on malting quality.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Qinghai Province Key Laboratory of Crop Molecular Breeding
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia

Traits related to biotic stress tolerance

Viral resistance: Highly efficient resistance against wheat dwarf virus (WDV), an economically important virus. WDV infect both wheat and barley causing severe yield losses. The natural resistance resources are limited.
(Kis et al., 2019)
SDN1
CRISPR/Cas
University of Pannonia
Hungarian Academy of Sciences
Eötvös Loránd University University
Szent István University, Hungary
Fungal resistance: increased resistance to both biotrophic and necrotrophic plant pathogenic fungi, Bipolaris spot blotch and Fusarium root rot.
(Galli et al., 2022)
SDN1
CRISPR/Cas
Justus Liebig University, Germany

Traits related to abiotic stress tolerance

Increased tolerance to salinity stress. Development of lines with reduced inositol hexakisphosphate (IP6) content may enhance phosphate and mineral bioavailability. ICP6 is a major storage form of phosphate in cereal grains.
( Vicko et al., 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic