Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 8 results

Traits related to industrial utilization

Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan
New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shandong Academy of Agricultural Sciences
Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley
National Engineering Laboratory for Wheat and Maize
Chinese Academy of Agricultural Sciences, China
Rapid generation of male sterile (MS) bread wheat. MS is an important tool in creating hybrid crop varieties that provide a yield advantage over traditional varieties by harnessing heterosis.
( Singh et al., 2021 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
Peking University
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, China
Fertility recovery of male sterility in wheat lines with excelling agronomic and economic traits for breeding purpose, as male-sterile plants cannot be used for selection.
( Tang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
China Agricultural University, China
Generation of male-sterile hexaploid wheat lines for use in hybrid seed production. The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity.
( Okada et al., 2019 )
SDN1
CRISPR/Cas
The University of Adelaide, Australia
Huaiyin Normal University, China
Complete male sterility. The generation, restoration, and maintenance of male sterile lines are the key issues for large-scale commercial hybrid seed production.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
School of Advanced Agriculture Sciences and School of Life Sciences
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, China